National Repository of Grey Literature 10 records found  Search took 0.01 seconds. 
Analysis of Tube Bulging Process
Zdráhala, Radim ; Císařová, Michaela (referee) ; Peterková, Eva (advisor)
The diploma thesis is focused on the analysis of the behavior of the thin-walled tubular test specimen during the technological test of the liquid draining of the tubes. The test specimen ‘in the form a tube was made of austenitic stainless steel 17 240 (1.4301, X5CrNi18-10). During the experiment, the radial expanding tool was quasi-statically charged by the internal fluid pressure. In the introductory part, the thesis focuses on the stress-strain description of the method of tube bulging and possible ways of detecting the strain of material during forming. The experimental part is primarily focused on the analysis of the test sample that was obtained from the experiment. Theoretical approaches were used to analyze the real test sample to detect strain and stress in material, numerical simulation of the bulge process and 3D ATOS scanning device, which helped clarify behavior tube during bulging process. At the end of the thesis is proposed possible design of the tool. This modification should contribute in the future to the full functionality of the radial expanding tool, or the bulging of the tube by liquid.
Measurement of mechanical properties of thin films using the bulge test technique
Holzer, Jakub ; Cieslar, Miroslav (referee) ; Kruml, Tomáš (advisor)
Main objective of this diploma thesis is to finish a construction of the Bulge test apparatus for measurement of thin films, perform first tests on commercially available Si3N4 membranes and bilayer membrane with aluminium. First part of the thesis is focused mainly on literature review of current knowledge regarding this topic and other methods of thin films testing. Experimental part deals with construction of apparatus, methodology of data evaluation and results of the measurement. The thin films of interest are fabricated as amorphous silicon nitride or bilayer of mentioned nitride and either aluminium, titanium or Ta-B-C layer. The apparatus has been built in house in collaboration with Institute of Scientific Instruments of CAS. Both reliability and repeatability of this method has been tested on over 160 measurements of commercially available membrane. The results of measurements are compared with literature and nanoindentation test. More detailed data analysis is currently under development with colleagues at Institute of Physics of Materials. It has been proven beyond doubt that Bulge test method and constructed apparatus are suitable for the measurement of several mechanical properties of thin films.
Determination of elastic modulus of thin layer - numerical study of microcompressive test and the bulge test
Petráčková, Klára ; Pokorný, Pavel (referee) ; Náhlík, Luboš (advisor)
Determination of mechanical properties of very thin films is rather difficult task as all of currently using testing techniques have some weakness. This master’s thesis deals with microcompressive test and bulge test. Finite element simulations of the two methods were carried out in order to better understanding of experimental record. Microcompression combines the sample preparation with the use of focused ion beam (FIB) with a compression test carried out using nanoindenter. Cylindrical specimens (pillars) were prepared from Al film deposited on Si substrate using FIB. Experimentally measured data on pillars needs correction to obtain undistorted material properties of Al thin film. A necessary correction using FE modeling is suggested in the thesis. Second part of the work is focused on modeling of bulge test. Pressure is applied on freestanding SiNx film while deflection of the film is measured. Stress state in the film is biaxial making determination of mechanical properties of the film more complicated. The goal is to present how to model the whole problem. In addition, preparation of the specimens was simulated to estimate residual stress in the film. The paper contributes to a better characterization of very thin surface layers and determination of their mechanical properties.
Estimation of mechanical properties of thin films using numerical modelling of experimental tests
Tinoco Navarro, Hector Andres ; Jančo,, Roland (referee) ; Klusák,, Jan (referee) ; Hutař, Pavel (advisor)
Testování tenkých filmů pomocí "Bulge testu" je experimentální technika která zahrnuje použití numerických a analytických přístupů k charakterizaci mechanických vlastností tenkých vrstev. Tato práce se zabývá některými omezeními nalezenými v klasických modelech, které popisují chování tenkých vrstev podrobených tomuto testu. Za tímto účelem byly vyvinuty nové modely a numerické strategie pro stanovení různých mechanických vlastností jednovrstvých a dvouvrstvých tenkých vrstev za odlišných strukturních podmínek, jako je elasticita, plasticita a lom. Kombinací metody konečných prvků a klasických analytických řešení byly navrženy a ověřeny různé metodiky pro výpočet elastických vlastností (E a v), zbytkových napětí, meze kluzu a lomové houževnatosti. Mechanické vlastnosti filmů z nitridu křemíku, hliníku a zlata byly charakterizovány pomocí experimentálních dat o zatížení-průhybu získaných z měření. Stanovené vlastnosti vykazovaly uspokojivou shodu s což potvrdilo, že metody navržené v této práci mohou být užitečné pro odhad mechanických vlastností se známými materiálovými vlastnostmi tenkých vrstev.
Estimation of mechanical parameters of thin films using finite element analysis
Tinoco Navaro, Hector Andres ; Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Chlupová, Alice ; Kruml, Tomáš ; Hutař, Pavel
This study shows a methodology to estimate mechanical parameters of thin films by means of a bulge\ntest and a numerical approach. The methodology is based on the combination of finite element analysis with a\nclassical analytical method. Finite element modelling was conducted for monolayer (Si3N4) membranes of 2x2mm\nwith the aim to approximate both the load-deflection curves experimentally measured and the classical loaddeflection\nanalytical model. Error functions were constructed and minimized to delimit a coupled solution space\nbetween Young’s modulus and Poison’s ratio. In a traditional bulge test analysis only one of the elastic properties\ncan be determined due to that there is not unique solution in the estimations of these parameters. However, both\nelastic parameters were determined through the proposed numerical procedure which compares the deformed\nsurfaces for a specific set of optimal elastic parameters computed. Results shows that the estimated elastic\nproperties agree with corresponding values determined by other methods in the literature
Measurement of mechanical properties of thin films using the bulge test technique
Holzer, Jakub ; Cieslar, Miroslav (referee) ; Kruml, Tomáš (advisor)
Main objective of this diploma thesis is to finish a construction of the Bulge test apparatus for measurement of thin films, perform first tests on commercially available Si3N4 membranes and bilayer membrane with aluminium. First part of the thesis is focused mainly on literature review of current knowledge regarding this topic and other methods of thin films testing. Experimental part deals with construction of apparatus, methodology of data evaluation and results of the measurement. The thin films of interest are fabricated as amorphous silicon nitride or bilayer of mentioned nitride and either aluminium, titanium or Ta-B-C layer. The apparatus has been built in house in collaboration with Institute of Scientific Instruments of CAS. Both reliability and repeatability of this method has been tested on over 160 measurements of commercially available membrane. The results of measurements are compared with literature and nanoindentation test. More detailed data analysis is currently under development with colleagues at Institute of Physics of Materials. It has been proven beyond doubt that Bulge test method and constructed apparatus are suitable for the measurement of several mechanical properties of thin films.
Development of the bulge test equipment for measuring mechanical properties of thin films
Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Tinoco, H.A. ; Chlupová, Alice ; Kruml, Tomáš
The bulge test apparatus designed for the measurement of mechanical material properties of thin films was constructed and tested. The principle of the test is to apply pressure on a free-standing membrane, to measure the membrane shape and to analyse the results. Commercially available silicon nitride (Si3N4) thin films were used for the testing. It is shown that interferometric set-up designed and assembled for the apparatus enables precise determination of 3D shape of the whole membrane, which allows more precise determination of materials parameters compared to measurement of the height of the center of the membrane only. Fit of an analytical formula gives values of Young modulus and residual stress with very good agreement with the literature data. Moreover, FEM model of the bulged membrane was developed. The main aim of the effort is to enable measurement of plastic properties of a thin film of interest, that will be deposited on the Si3N4 membrane with known properties and bulge test will be performed on the bilayer specimen. Subsequently, the material properties of the thin film will be obtained using FEM analysis.
Detecting plasticity in al thin films by means of bulge test
Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Tinoco, H.A. ; Chlupová, Alice ; Náhlík, Luboš ; Sobota, Jaroslav ; Fořt, Tomáš ; Kruml, Tomáš
The Bulge test proved to be a useful tool for measuring elastic properties of thin films and\nfree standing membranes, particularly Young’s modulus and residual stress. The basic principle\nof bulge test is application of differential pressure on one side of the a membrane, measurement of\nthe shape of bulged surface as a function of pressure, in this case via laser interferometer, and\nevaluation of a pressure-deflection relationship. In this study, bilayer membrane consisting of a\nsilicon nitride supporting layer and an aluminium layer deposited by means of magnetron\nsputtering is subjected to the bulge test. The results clearly show signs of a non-linear behavior\nthat is caused by plastic deformation in the aluminium layer. Finite element analysis is being\ndeveloped to describe this behavior because analytical model using deflection of central point and\npressure relation falls apart in case of non-linearity.
Analysis of Tube Bulging Process
Zdráhala, Radim ; Císařová, Michaela (referee) ; Peterková, Eva (advisor)
The diploma thesis is focused on the analysis of the behavior of the thin-walled tubular test specimen during the technological test of the liquid draining of the tubes. The test specimen ‘in the form a tube was made of austenitic stainless steel 17 240 (1.4301, X5CrNi18-10). During the experiment, the radial expanding tool was quasi-statically charged by the internal fluid pressure. In the introductory part, the thesis focuses on the stress-strain description of the method of tube bulging and possible ways of detecting the strain of material during forming. The experimental part is primarily focused on the analysis of the test sample that was obtained from the experiment. Theoretical approaches were used to analyze the real test sample to detect strain and stress in material, numerical simulation of the bulge process and 3D ATOS scanning device, which helped clarify behavior tube during bulging process. At the end of the thesis is proposed possible design of the tool. This modification should contribute in the future to the full functionality of the radial expanding tool, or the bulging of the tube by liquid.
Determination of elastic modulus of thin layer - numerical study of microcompressive test and the bulge test
Petráčková, Klára ; Pokorný, Pavel (referee) ; Náhlík, Luboš (advisor)
Determination of mechanical properties of very thin films is rather difficult task as all of currently using testing techniques have some weakness. This master’s thesis deals with microcompressive test and bulge test. Finite element simulations of the two methods were carried out in order to better understanding of experimental record. Microcompression combines the sample preparation with the use of focused ion beam (FIB) with a compression test carried out using nanoindenter. Cylindrical specimens (pillars) were prepared from Al film deposited on Si substrate using FIB. Experimentally measured data on pillars needs correction to obtain undistorted material properties of Al thin film. A necessary correction using FE modeling is suggested in the thesis. Second part of the work is focused on modeling of bulge test. Pressure is applied on freestanding SiNx film while deflection of the film is measured. Stress state in the film is biaxial making determination of mechanical properties of the film more complicated. The goal is to present how to model the whole problem. In addition, preparation of the specimens was simulated to estimate residual stress in the film. The paper contributes to a better characterization of very thin surface layers and determination of their mechanical properties.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.